The early spring and hot summer weather created conditions ideal for early rot (Phylllosticta vaccinii), and indeed, early rot has been showing up in younger beds with open canopies for over a month already. No one likes to see rot in new plantings, especially if they were treated with fungicides. But we can take some comfort in knowing that early rot tends to subside as vines fill in, presumably because the shading of the canopy keeps the temperature lower than in an exposed canopy.

Other forms of fruit rot, including bitter rot (Colletotrichum), generally show up in late September and into October. However, since many beds were in bloom 3-4 weeks early, I would not be surprised if fruit rot also shows up ahead of schedule this year. In fact, rots in established beds are starting to show up, and will likely get worse in the coming weeks as fruit infected early in the season ripen and fungi are released from their latent phase. Some growers are wondering if an additional fungicide spray is warranted, given that berries have to hold up for another 6 to 8 weeks. My answer to this is “no” for the following reasons:

1. Most fungal infection that leads to fruit rot occurs during bloom and early fruit set stages, which is why spraying at that time is critical. Although fungal spores are still around later in the season, research by Peter Oudemans in New Jersey suggests that spraying later does not improve disease control. When rot occurs later in the season, it is most likely from early-season infections that remain dormant until fruit ripen.

2. The fungicides with shorter pre-harvest intervals have their limitations. Indar (PHI = 30 days) is not effective against Colletotrichum, the most important late-season rot fungus at most sites in Wisconsin. Abound (PHI = 3 days) and Evito (PHI = 1 day) are primarily protectants with limited systemic activity in green tissues and probably even less in blush/red fruit. If some fungicide is taken up by blush/red fruit, it is not likely to be enough to prevent rot. Mancozeb (e.g., Penncozeb, Dithane, PHI = 30 days) can reduce fruit color and also is limited by its lack of systemic activity. Copper (no PHI) is not an effective fruit rot fungicide, even when applied during bloom and early fruit set. The phosphorous acid products (e.g., Phostrol, Prophyt, PHI = 3 and 0 days, respectively) are not well tested for fruit rot, but I would not expect success since they are primarily effective on Phytophthora and not other types of fungi.

3. If you are unconvinced by the arguments made in points #1 and #2, consider the issue of coverage. Especially in beds of the newer cultivars, fruit is so dense that it would be impossible to achieve good coverage with a boom, especially lower in the canopy where late-season rot tends to be worst. Continued on p. 4
Nearly any time I meet someone new or when I’m catching up with an old friend, they always want to know what I’m going to school for, what jobs I’ve had and what job I currently have. That is when I tell them that right now I am a cranberry crop scout performing IPM (Integrated Pest Management) practices. Most of the time these people have no clue what I am talking about and the moment I say pest, they assume we are chasing mice and other things most people associate the word pest with around the cranberry marshes. In all honesty, my first impression of IPM wasn’t too much different other than I was educated in the fact that the pests weren’t mice. In the first weeks of the season I was thrown right in and shown what IPM really entails. So, when I go to relay what I had learned then and throughout the season, people typically became intrigued and surprised that there are people out there actually doing this!

Usually, I lead with the most common fact of IPM and how the practice has reduced pesticide usage considerably compared to what growers have used in years past. I also inform them that routine scouting helps control the timing by waiting until pest levels have made it economically feasible to take action and treat. It all boils down to timing. Timing is what makes IPM so successful. Action is taken when the pests are at their most vulnerable state, early in their life cycle and when they have reached an economic threshold. This helps avoid treating the same generation of pest and increases the effectiveness of a given application. That means the pests are only dealt with when necessary. Essentially, IPM limits pesticide use and crop loss helping produce higher yields and profit margins at the end of the season for many growers. On top of the reduced pesticide use, there are many indirect benefits not only to the growers, but the consumers also.

Think about it this way, when the growers are saving money; so are the consumers. Take for instance, a given application costs $30 an acre for just the pesticide itself and it’s applied on 100 acres of cranberry bed. That is $3000 just for the product per application; now take into consideration the other expenses involved beyond the pesticide itself. The grower has to pay for fuel, labor, wear and tear on machinery, and takes on the liability or opportunity for pesticide exposure. Since IPM is keeping the number of treatments to the bare minimum, the money saved from avoiding unnecessary applications can be used in other areas such as expanding, maintenance, research or just increasing overall profit. In addition to the economic benefits, think about the reduced impact that a cranberry marsh has on the environment. Fewer chemicals released into the environment is always a plus for agriculture or any other industry and looks good to the consumers. This is all most people need to hear to change their previous views of what today’s agriculture system is like. On a few occasions these people even tell me that they didn’t realize farmers/growers hire out or go to these lengths to keep providing the highest quality produce and limit their effects on the environment.

In all honesty I don’t think that my brief explanation does IPM justice. There are many more ways besides the obvious points I have listed above that IPM has done a great service to agriculture, the growers and the consumers. Because IPM saves for everyone, I think it is something that deserves a bit of praise from all.

Address Correction
If you have any address corrections, additions, or deletions, please let us know. Please call 715-421-8440 or e-mail: mspencer@co.wood.wi.us
August 24, 2012 – BRONZED UPRIGHTS

Within the past few weeks we have been noticing a salt and pepper look of bronzed uprights in Searles, Stevens and GH#1. The “look” came on quick and has been getting more obvious. When I follow a runner I see several green uprights along with the bronzed uprights. Samples from Monroe, Jackson, Wood, Adams, and Juneau County have been sent to the Diagnostic Clinic in Madison for analysis. The symptoms look like upright dieback yet with that said we saw the same thing in 2010 and the analysis came back stating it was NOT true Upright Dieback Disease - it was simply uprights dying back.

Until the analysis comes back we would be just speculating. I strongly encourage growers that see these kinds of symptoms on your marsh to send in samples to Madison. If it is “TRUE” upright dieback disease it would be treated in the spring when we see ¼” new growth with a good Bravo application. If it is NOT a disease, Bravo would NOT be the answer.

The photo shows an example of what we are seeing.

August 24, 2012 – PRETTY PASTEL PINK BLOOM IN AUGUST

I have been showing growers what “Bud Blasting” looks like since late July. Well, that “blasted bud” is now in bloom. Yesterday I took the camera out to photograph the dainty flower showing above a set crop. I actually dropped a square at one of my marshes and discovered 8 – 12 blossoms in that square foot site!

So what does all this mean? I truly believe that our cranberry plants are confused. Think about it… The season started in March and it has been Very HOT and HUMID most of the summer. We are better than 250 Growing Degree Days ahead of the thirty-year norm (Wisconsin Pest Bulletin) and the season isn’t over yet! If a plant could talk, would it ask, “What season is it?”

Growers are asking, “Will those berries make it to harvest?” and “Will that upright set another bud for 2013?” You know what? I have seen so many miracles this season that it would not surprise me to see those berries make it and a bud setting! (Continued p. 4)

See photos of that dainty pastel pink blossom with a solid crop underneath. Note the pinheads in the photo.
Fruit Rot Update

(Continued from p. 1)

For these reasons, I recommend not applying another fungicide spray this year. However, I also understand the difficulty of standing by and doing nothing, especially if you do detect rot starting up. If you do opt to spray, I would encourage you to leave a small portion of the bed(s) not sprayed. Then, just prior to harvest, compare the sprayed and not sprayed portions, and please let me know how it turns out. I certainly hope we are done with the 90+ degree weather, but if hot weather returns, irrigate for evaporative cooling. The benefits of cooling will offset the disease risk of fruit being wet for a brief period.

❖❖❖

Observations from the Field

(Continued from p. 3)

Additional observations:

Across Wisconsin we are still seeing fresh Flea Beetle feeding and we are sweeping some of the pests.

The Japanese beetles are still out there as well, with some sweep net counts up to 2 and 3 in a series of 20 sweeps. We are observing feeding to the vines from this new pest.

We do see an occasional young sparg but not at numbers that we would recommend an insecticide application.

The color cast to our vines has changed dramatically since a week ago. A purple hue has set in on the vines since the cool/cold nights this past weekend. We are seeing some browning seeds to the top/more exposed fruit. At this point the bud has a reddish tint to it as well and I believe that this is an overwintering look.

Have a Bountiful Harvest everyone and be safe!
A once Endangered species in Wisconsin, the Osprey (Pandion haliaetus) now successfully lives and breeds during our cranberry growing season. The whistling call is unmistakable and is a pleasant reminder that cranberry growers have played a part in the recovery of this majestic raptor. Populations of Osprey dramatically declined due to indiscriminate shootings, loss of habitat, and the use of DDT. In 1969, DDT was banned FIRST in the state of Wisconsin. All other states eventually followed suit. The populations of Osprey slowly increased and with the aid of the WDNR who started an artificial nest platform program, osprey populations began to really take flight.

Osprey prefers to nest in the tallest tree available near shallow water with an ample supply of fish. The surrounding land associated with many cranberry marshes can provide all things essential for continued successful breeding of osprey in Wisconsin. In many cases, osprey have been attracted to utility poles. Electric companies have worked with cranberry growers to provide alternate nesting sites or aided in the construction of platforms above the utility poles. Interestingly, there is one successful pair nesting atop a cranberry growers (unused) dragline.

Osprey platform construction plans can be found on several sites on the internet. One site is: www.lrconline.com/Extension_Notes_English/pdf/osprey.pdf. Or, contact the WDNR, or your utility company; both will have valuable information. Keep in mind that artificial structures need to be at least 150 feet from the forest edge to prevent predation, should be ¼ mile away from an eagle nests, should be a minimum of 25 feet tall, and should not be located in a high disturbance area.

The Osprey is one of the most unique raptors in North America due to its mostly exclusive live fish diet. It’s amazing to watch this 6-foot wing span bird glide through the air above our reservoirs and ponds looking for its next meal. It truly is an amazing site to see them hover over the water and grasp a fish near the surface with their talons. It’s near time for them to migrate south; and I, along with many cranberry growers, will miss seeing the female incubate her eggs on her bulky nest and watch the young fledglings learn how to fish. Ospreys have come a long way since their populations were at risk. In 1974 there were only 82 pairs and today (a 2011 census) there are 527! Cranberry growers have played a role in success of this bird not only through pesticide awareness, but also by providing habitat and fishing grounds for this amazing creature.
Tell the Story of Sustainable Cranberry Production.
By Matt Lippert, Wood County UW-Extension Agriculture Agent

It has been a long, hot, dry and demanding season, but now the harvest is coming and the opportunity to gain the rewards of all your effort.

Did you know?
98% of cranberry operations are family owned
77% of cranberry growers employ an IPM consultant
70% of year-round employees receive health and retirement benefits
The average age of a Wisconsin Cranberry Bed is 39 years.

All of these are considered signs of sustainability in cranberry production. The data was collected in 2009 by the UW and Wisconsin State Cranberry Growers Association. If you have visitors to your marsh this harvest season and want a tool to tell the story of sustainable cranberry production go on line to: http://www.cals.wisc.edu/downloads/SustainableCranberry.pdf

It is a colorful and informative bulletin that tells the story of sustainable cranberry production.

References to products in this publication are for your convenience and are not an endorsement of one product over similar products. You are responsible for using pesticides according to the manufacturer’s current label directions. Follow directions exactly to protect the environment and people from pesticide exposure. Failure to do so violates the law.