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Abstract. During a 3-year study of bitter pit in commercial ‘Honeycrisp’ apple (Malus
3domestica) orchards, incidence was associated with low calcium (Ca) levels in fruit peel;
high ratios of nitrogen (N), potassium (K), and/or magnesium (Mg) to Ca in fruit peel;
excessive terminal shoot length; and low crop load. Peel N and Mg concentrations were
negatively correlated and peel Ca concentration positively correlated with crop density
(CD). Shoot length (SL) was not consistently correlated with peel N, Mg, or phosphorus
(P) and was negatively correlated with only Ca. A two-variable model that included SL
and the ratio of N to Ca explained more than 65% of bitter pit incidence. The model has
implications for best management of the cultivar in the field and during storage.

The high susceptibility of ‘Honeycrisp’ to
bitter pit is not well understood. Crassweller
and Smith (2016) found levels of Ca in foliar
tissue were lower in ‘Honeycrisp’ than in

‘Cameo’. Cheng (2016) reported lower fruit
levels of Ca in ‘Honeycrisp’ compared with
‘Gala’. Fruit levels of K, Mg, and P were
similar in the two cultivars, and he proposed
the resulting nutrient imbalance predisposed
‘Honeycrisp’ to a deficiency of Ca and Ca-
related disorders. Research in New Zealand
on mineral movement in bitter pit–prone
cultivars indicated rapid early season uptake
of Ca and poor to no late season uptake,
whereas K andMg continued to increase over
the course of the season (Ferguson, 2001;
Ferguson and Watkins, 1989).

Studies conducted on bitter pit develop-
ment at the cellular level have improved the
understanding of Ca localization in cells of
pitted fruit. De Freitas et al. (2010) reported
evidence of a connection between bitter pit
and Ca2+ binding to cell walls as well as Ca2+

accumulating in storage organelles. Addi-
tional cytochemical research (De Freitas
et al., 2015) demonstrated an association
between higher levels of water-insoluble
pectin Ca2+ and bitter pit. Hocklin et al.
(2016) proposed a possible role of apoplas-
mic calcium-pectin crosslinking.

Bitter pit management in the orchard is
central to disorder prevention but is not
always effective, and the reasons are often
unclear. Research conducted by Rosenberger
et al. (2004) demonstrated that season-long

Ca treatments were required for reducing
bitter pit incidence in ‘Honeycrisp’ grown
in New York. Bitter pit control was not
enhanced by supplementing Ca sprays with
trifloxystrobin fungicide, boron, or harpin
protein treatments. Trials by Biggs and Peck
(2015) showed that rates ranging as high as
26.3 kg·ha–1 per season of elemental Ca were
needed to significantly reduce bitter pit in-
cidence in ‘Honeycrisp’ apples grown in
Virginia and West Virginia orchards. Foliar
Ca products were evaluated in both studies,
and none were better than calcium chloride
(CaCl2). Telias et al. (2006) reported that
crop load had a more significant effect on
bitter pit than Ca sprays, with bitter pit
incidence being positively correlated to low
yield and large fruit. Mitcham (2008) and
Silveira et al. (2012) demonstrated that shoot
growth suppression reduced bitter pit inci-
dence. Research results reported by other
investigators on the effects of Ca, crop load
(CD), and shoot growth have at times been
contradictory, and predictive tools are needed
to assist producers in developing site-specific
best management programs for managing
bitter pit.

Fruit mineral analysis has the potential to
assist producers in managing nutrient im-
balances in the orchard while also providing
a possible predictive tool. In research by
Ferguson et al. (1979), low Ca in ‘Cox’s
Orange Pippin’ fruit sampled 3 weeks before
harvest was associated with an increased risk
of bitter pit development. Amarante et al.
(2013), De Freitas et al. (2015), Dris et al.
(1998), Ferguson and Watkins (1989), and
Lanauskas and Kvikliene (2006) suggested
high N, K, and/or Mg to Ca ratios in fruit of
bitter pit–prone cultivars could improve the
prediction of susceptibility to the disorder. Al
Shoffe et al. (2014) reported significant
correlations between bitter pit and levels of
N, P, K, N/Ca, Mg, and (Mg + N)/Ca ratio in
‘Honeycrisp’ fruit.

The fruit tissue sampling procedure af-
fects the reliability of bitter pit prediction
from mineral analysis, and Amarante et al.
(2013) demonstrated tissue should be sam-
pled from the calyx end of the fruit. The best
tissue to sample from ‘Fuji’ was the peel,
whereas the flesh was a better predictor for
‘Caterina’. Before the research reported in
this article, the authors compared peel and
flesh nutrient measurements for ‘Honeycrisp’
and found improved correlations to bitter pit
with nutrients measured in peel tissues
(Baugher et al., 2014). We also found peel
tissues could be prepared by air-drying rather
than freeze-drying, which made the tech-
nique more practical for commercial growers
(unpublished data).

The objectives of a 3-year study of ‘Hon-
eycrisp’ grown at three crop densities in six
commercial orchards were to

1. improve guidelines for balancing CD,
terminal SL, and fruit nutrient levels to
reduce bitter pit incidence in ‘Honey-
crisp’ orchards and
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2. develop predictive models for deter-
mining how to improve management
and postharvest handling of ‘Honey-
crisp’ apples.

Packinghouses in major fruit growing
regions use various fruit nutrient models to
predict the potential for bitter pit in storage
(Ferguson, 2001; Hanson, 2012). This in-
vestigation was designed to assess both field
measurements and fruit nutrient measure-
ments with the objective of developing
a model that would guide both fruit producers
and fruit packers.

Materials and Methods

Field trial design. During 2014 to 2016,
uniform field trials were established in six
high-density ‘Honeycrisp’ blocks in orchards
with varying histories of bitter pit incidence.
The studies included two orchard blocks each
with histories of high, moderate, and low
levels of bitter pit. The six blocks were the
same each year with the exception of a change
in 2016 because of two blocks (history of low
bitter pit) receiving hail damage. At the start
of the project, the trees ranged in age from
5- to 8-year old, and no prohexadione-calcium
was applied to suppress shoot growth in any
of the blocks or years.

Within each block, three trees each were
selected with high, medium, and low
crop loads. Individual trees were handled
as replications, and the following data were
collected:

1. Trunk diameter at a 20-cm height and
the number of fruit at harvest for de-
terminations of CD (fruit/cm2 trunk
cross-sectional area);

2. Average SL calculated from 10 repre-
sentative terminal shoots per tree after
terminal bud set;

3. Fruit peel nutrient levels at 3 weeks
before harvest (composite sample from
15 randomly selected fruit of similar
size per tree);

4. Average fruit weight, soluble solids
concentration, and flesh firmness at
harvest (five representative fruit per
tree); and

5. Bitter pit incidence at harvest and again
following long-term storage (the per-
centage of 20 randomly selected fruit
of similar size per tree with bitter pit
symptoms).

Fruit tissue preparation and analysis.
Selection of the fruit tissue to sample was
based on a 2012 preliminary study in which
bitter pit incidence was more closely corre-
lated to minerals in fruit peel than in fruit
tissue (Baugher et al., 2014). Based on re-
search by Amarante et al. (2013), 1-cm wide
peel samples were taken from around the
circumference at the calyx end of the fruit,
using a potato peeler and exercising care to
prevent removal of fruit flesh. Fruit peel
samples were air-dried and then ground into

a fine powder. Analyses for N, P, K, Ca, Mg,
Mn, Fe, Cu, B, and Zn were conducted by the
Penn State Agricultural Analytical Services
Laboratory (procedures described at http://
agsci.psu.edu/aasl/plant-analysis/plant-methods;
Penn State College of Agricultural Sciences,
2017).

Bitter pit assessment. Fruit samples were
collected at optimum maturity for long-term
storage based on ground color and starch
measurements (Blanpied and Silsby, 1992;
Greene et al., 2015). The samples were stored
at the Penn State Fruit Research and Exten-
sion Center, Biglerville, PA, in air storage
maintained at 3.3 �C. Fruit were assessed for
the incidence of bitter pit after 4 months in
storage plus 7 d at 20 �C.

Statistical analysis. Relationships be-
tween variables of the study were first eval-
uated as scatter plots with SAS’s PROC
GPLOT and G3D before using PROC CORR
(Freund and Littell, 2000) to verify the linear
relationships between the response variable
(percentage of fruit with bitter pit symptoms
after storage) and 21 potential regressor vari-
ables [average SL (cm), CD (fruit/cm2 trunk
cross-sectional area)], N, P, K, Ca, Mg, S,
Mn, Fe, B, Cu, Al, Zn, Na, N/Ca, K/Ca, Mg/
Ca, (Mg +K)/Ca, (Mg +K +N)/Ca, [(Mg +K
+ N)/Ca] – 38 (referred to as the ‘‘accumu-
lated ratio’’), and {[(Mn + N)/Ca] + (Mg/Ca)
+ [Mg/(Ca + (Mg + K))/Ca]}. The accumu-
lated ratio was included as a variable be-
cause it is a fruit nutrient model (developed
by Harold Ostenson; Hanson, 2012) used by
Washington packers to segregate fruit by
storage potential. PROC REG was used to
develop multiple regression models for each
year following the same approach. Because
the models developed for each year were not
similar, the data for all three years were
combined to identify a subset of variables
for a predictive model.

The combined data set with 162 observa-
tions was split by randomly assigning two-
thirds of the observations to a ‘‘training’’ data
set and the remaining 54 observations as
a ‘‘validation’’ data set. For comparative
purposes, models were obtained for the train-
ing data set with the FORWARD selection,
BACKWARD elimination, STEPWISE
selection, and MAXR maximum R-square
improvement methods. These methods are
easily performed, and they usually identify
good models based on the selection crite-
ria, but they rarely identify the best model
(Myers, 1990). Therefore, the best model was
identified using the RSQUARE option in the
model statement to generate all possible one-
variable, two-variable, three-variable,.,
19-variable models. Criteria considered for
model selection included the coefficient of
determination (R2), adjusted R2, Mallow’s
conceptual predictive criteria (Cp), mean
square error (MSE), Akaike information
criterion (AIC), and prediction sum of
squares. Values of the Cp statistic indicated
that a model with six- or seven-variables
would prevent overfitting. The three best
seven-variable models contained similar
subsets of variables including SL, plus

combinations of ten variables (P, Mg, K, S,
Zn and the ratios of N/Ca, K/Ca,Mg/Ca, (Mg +
K)/Ca, and accumulated ratio. All of these
models had R2 values of 0.701–0.704 and
adjusted R2 values of 0.680–0.683. A model
was fit with all 11 of these regressor vari-
ables, and the R, INFLUENCE, VIF, and
COLLINOINT options were requested to
provide model diagnostics. Based on values
of the influence statistics (Hat Diagonal
statistic, Cov Ratio statistic, DFFITS, and
DFBETAS), one observation was identified
as influential and was deleted from the data
set. The eigenvalues, variance inflation index,
condition index, and proportion of variation
values indicated that the predictor variables
were not collinear. Although scatter plots and
partial leverage plots did not indicate the need
for including quadratic terms in the model,
quadratic terms for each variable were included
in the model and manual backward elimination
was used to remove variables from the model
that were not significant (P > 0.05). Two-way
interaction terms were also created and added
to the model and nonsignificant (P > 0.05)
variables were eliminated from the model by
manual backward elimination.

The best model contained the terms SL,
N, Ca, Ca2, Mn, and Ca * N (all variables
were significant at the 5% level, R2 = 0.7251,
Adjusted R2 = 0.7086). A slightly simpler
model contained the terms SL, N, Ca, Ca2,
and Ca * N (R2 = 0.7148, Adjusted R2 =
0.7007). A much simpler model that
explained nearly as much variation contained
just two variables, SL and N/Ca (R2 = 0.6805,
Adjusted R2 = 0.6765). Based on the adjusted
R2, the more complicated model explained
only 2.4% more variation, so we chose the
two-variable model as the best model.

To validate the training model, the vali-
dation data set was used to fit a model using
the FORWARD selection and RSQUARE
options in PROC REG and the same two-
variable model was again selected (R2 =
0.6605, Adjusted R2 = 0.6472). To further
cross-validate the model, the regression
equation estimated from the training model
was used to predict values of BP using the
same model for the validation data set. Using
PROC REG, the parameter estimates were
output to a new data set and used as scoring
coefficients with PROC SCORE (Freund and
Littell, 2000). The new data set containing
the original data set plus the predicted values
was used to plot the actual values against the
predicted values to visually evaluate how well
the model fit the data. PROC GLMSELECT
(Cohen, 2006) was also used to validate
the model using all 19 regressor variables.
By including VALIDATE = 0.30 in the
PARTITION statement, 30% or 48 observa-
tions randomly selected from the original
data set of 162 observations were assigned
to the validation data set. Models were fitwith
the FORWARDand STEPWISESELECTION
options with STOP = VALIDATE. In addition,
the model was also fit with the LASSO
SELECTION. All three methods selected the
same two-variable model that was previously
identified (SL and N/Ca).
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Results and Discussion

Comparisons of bitter pit incidence, fruit
nutrient levels, CD, and terminal SL. Means
for all variables by year and orchard are
presented in Table 1. Regression analyses
over the multiple years of the project indicated
bitter pit was very highly correlated to the fruit
peel ratios of N/Ca, K/Ca, Mg/Ca, (K + Mg)/
Ca, (N+ K+Mg)/Ca and (Mg+ K+ N)/Ca) – 38
(accumulated ratio) and inversely correlated
to the level of Ca (Table 2). Bitter pit in-
cidence increased with increasing SL and
decreased with decreasing CD (Table 2).
Soluble solid concentration and firmness
were not correlated with bitter pit in any of
the years of the study, and fruit weight was
correlated with bitter pit in 2016 only, with
larger fruit having more bitter pit (data not
shown).

The percentage of fruit developing bitter
pit varied depending on year, orchard, and
tree within an orchard. When averaged over
the nine trees within an orchard, the average
percentage of fruit developing bitter pit
varied from 0% to 22%, 3% to 21%, and
0% to 74% in 2014, 2015, and 2016, re-
spectively (Table 1). The variation within

orchards was not consistent. For example, in
2014, all nine trees in Orchard 6 had no bitter
pit, whereas in 2016, the percentage of fruit
on individual trees developing bitter pit in
Orchard number 4 varied from 0% to 100%
(data not shown). Bitter pit was most severe
in 2016, but even in this severe year one
orchard had no bitter pit. Considering the
entire data set, CD varied from 1.66 to 5.09
fruit/cm2 trunk cross-sectional area. Average
SL varied from 9.8 to 38.7 cm, and shoots
were shortest in 2014. Fruit peel N concen-
trations ranged from 0.28% to 0.50% and
were lowest in 2015. Peel K concentrations
varied from 0.59% to 1.17% and tended to be
highest in 2014. Peel concentrations of Mg
and Ca ranged from 0.074% to 0.109% and
0.022% to 0.050%, respectively, and differ-
ences between years were small. The ratio of
N to Ca in the peel varied from 7.2 to 23.2 and
tended to be lowest in 2015. The ratios of
(Mg + K)/Ca, and (Mg + K + N)/Ca and
accumulated ratio ranged from 13.4 to 53.2,
22.1 to 76.5, and –15.9 to 38.4, respectively.

Correlations for individual and multiple
years. The linear correlations among vari-
ables were usually similar for all 3 years
(Table 2). Bitter pit was significantly correlated

with most variables in Table 2 every year, but
correlation coefficients were lowest in 2015
and highest in 2016 (Table 2). In 2014 and
2015, bitter pit was not correlated with N and
Mg peel concentrations. Bitter pit was nega-
tively correlated only with CD and peel Ca
concentration every year. Within a season,
the various ratios of elements were similarly
correlated with bitter pit. Correlation coeffi-
cients ranged from 0.56 to 0.63, 0.47 to 0.51,
and 0.81 to 0.88 in 2014, 2015, and 2016,
respectively. Ratios of concentrations of
elements in the peel were more highly corre-
lated with bitter pit than were concentrations
of individual elements in the peel. Bitter pit
was more highly correlated with CD and SL
than with concentrations of individual ele-
ments in the peel. CD was positively corre-
lated with peel Ca concentration. Peel N and
Mg concentrations were negatively correlated
with CD. Shoot length was not consistently
correlated with peel N, Mg, or P and was
negatively correlated with only Ca.

The best multiple regression models de-
veloped using data from individual years
indicate bitter pit incidence was related to
different predictor variables each year
(Table 3). In 2014, N, CD, Ca, and their

Table 1. Bitter pit (%), crop density (CD, fruit/cm2 trunk cross-sectional area), average shoot length (SL, cm), and peel nutrient levels for six commercial
‘Honeycrisp’ orchards over 3 years.z

Yr Orchard Bitter pit CD SL N (%) K (%) Mg (%) Ca (%) N/Ca (Mg + K)/Ca (Mg + K + N)/Ca Accum. ratioy

2014 1 22.3 1.66 16.61 0.50 1.05 0.087 0.034 15.16 34.26 50.61 11.42
2 7.2 4.29 12.10 0.50 1.04 0.109 0.044 11.72 27.13 39.47 0.85
3 9.1 3.29 14.51 0.36 1.14 0.088 0.037 10.74 37.66 49.95 10.39
4 15.7 2.60 18.57 0.41 1.17 0.096 0.046 9.27 28.52 37.81 –0.21
5 6.3 1.83 17.67 0.42 1.06 0.096 0.040 10.12 34.88 47.12 0.28
6 0.0 3.61 9.81 0.42 0.85 0.806 0.043 10.61 23.68 32.40 –3.71

2015 1 15.6 2.42 28.44 0.39 0.62 0.093 0.050 8.09 14.70 22.80 –15.21
2 20.6 1.82 29.46 0.34 1.13 0.085 0.032 10.63 38.46 48.98 11.09
3 17.2 2.69 30.40 0.28 0.86 0.093 0.036 8.23 28.44 36.73 –1.33
4 17.8 1.72 30.90 0.35 0.96 0.104 0.040 9.00 27.84 37.01 –1.16
5 2.8 2.94 30.99 0.30 0.81 0.094 0.042 7.19 31.85 29.09 –8.96
6 4.4 1.91 32.61 0.32 0.75 0.084 0.033 9.93 27.41 37.59 –0.66

2016 1 51.7 2.32 28.57 0.39 1.08 0.083 0.031 13.71 41.02 54.79 16.73
2 48.9 3.28 22.87 0.46 0.95 0.080 0.033 14.97 34.12 48.97 11.10
3 73.9 2.99 37.43 0.48 1.02 0.092 0.022 23.22 53.20 76.51 38.41
4 35.0 4.34 24.70 0.42 0.99 0.079 0.040 11.28 28.52 39.74 1.80
5 39.4 2.94 38.69 0.40 0.96 0.081 0.035 11.87 31.19 43.02 5.07
6 0.0 5.09 17.76 0.43 0.59 0.074 0.050 8.69 13.36 22.09 –15.95

zValues are means of nine trees per orchard with varying crop densities.
y{[(Mg + K + N)/Ca] – 38}.

Table 2. Correlation coefficients indicating the linear relationship between bitter pit (%), crop density (CD, fruit/cm2 trunk cross-sectional area), shoot length
(cm), and various concentrations of ‘Honeycrisp’ fruit peel nutrients (%) measured 3 weeks before harvest for three consecutive years (r-values greater than
0.273 and 0.354 are significant at the 5% and 1% levels, respectively, n = 54).

Variable

Bitter pit CD Shoot length

2014 2015 2016 2014 2015 2016 2014 2015 2016

CD –0.55 –0.50 –0.73 — — — –0.64 –0.69 –0.71
SL 0.52 0.44 0.72 –0.64 –0.69 –0.71 — — —
N 0.29 0.03 0.14 –0.02 0.05 0.04 0.02 –0.14 0.01
K 0.52 0.32 0.54 –0.43 –0.43 –0.38 0.65 0.31 0.34
Mg 0.09 0.11 0.61 0.14 0.07 –0.42 0.09 0.06 0.56
Ca –0.49 –0.41 –0.88 0.49 0.59 0.75 –0.52 –0.56 –0.72
P 0.62 0.45 0.50 –0.70 –0.58 –0.43 0.72 0.45 0.16
Mg/Ca 0.56 0.51 0.86 –0.43 –0.57 –0.65 0.50 0.61 0.72
K/Ca 0.56 0.49 0.88 –0.50 –0.56 –0.68 0.55 0.47 0.68
N/Ca 0.63 0.47 0.81 –0.47 –0.58 –0.61 0.40 0.50 0.65
(Mg + K)/Ca 0.56 0.46 0.88 –0.50 –0.57 –0.68 0.55 0.48 0.68
(Mg + K + N)/Ca 0.60 0.47 0.87 –0.50 –0.60 –0.67 0.52 0.51 0.69
Accum. ratio 0.61 0.48 0.88 –0.52 –0.59 –0.67 0.54 0.50 0.68

SL = shoot length.
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Table 3. Best multiple regression models for predicting the percentage of fruit on a tree likely to develop bitter pit (BP) in 2014, 2015, and 2016. All R2 values are
significant at the 0.01% level, n = 54.

Yr Model R2 Adj. R2

2014 BP = 43.5 + 111.4 * N + 2.5 * (N/Ca) + 1.9 * CD – 1.6 * (N/Ca * CD) –0.56 * (K/Ca) + 4.9 * (K/Ca * CD) 0.61 0.56
2015 BP = 0.027–0.033 * CD + 0.07 * (Mg/Ca) 0.32 0.29
2016 BP = –37.3 + 0.71 * SL + 1.76 * (Mg + K)/Ca 0.80 0.79

Fig. 1. Scatter plots showing the relationship between the percentage of fruit developing bitter pit and concentrations of nutrients in the peel at the calyx end of
‘Honeycrisp’ apples over three seasons. Each observation represents a single tree replicate.
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interactions were important predictors of
bitter pit, and the R2 was 0.61. In 2015, the
only two predictors that were significant were
CD and Mg/Ca, and the R2 was only 0.32.
In 2016, the best model contained SL and
(Mg + K)/Ca, and the R2 was 0.80. When the
best model developed with the 2014 data set
was fit to the data set for 2015, none of the
variables were significant (P > 0.03), and for
the 2016 data set, only one variable (K/Ca)
was significant at the 5% level. The variable
results from year to year indicate that for
unknown reasons bitter pit is related to
different variables each year, and models
based on data collected for a single season
are not very robust even when data are
collected from several different orchards.
Variables that may influence bitter pit, but
were not recorded in this study, may include
factors such as temperature and soil moisture.

From the scatter plots in Fig. 1, it is
obvious that bitter pit incidence was highest
in 2016. In 2014 and 2015, many trees had
little or no bitter pit regardless of peel mineral
concentrations, CD, or SL. For any given
level of an individual predictor variable, the
range of observed bitter pit was quite vari-
able. For example, in 2016, fruit on trees with
an average SL of 32 cm developed 10% to
100% bitter pit; fruit on trees with a CD of 2.3
had 10% to 100% bitter pit; and fruit on trees
with a (Mg + K)/Ca value of 45 had 30% to
90% bitter pit. Therefore, in any given year
bitter pit severity was likely related to some
variable(s) that we did not measure. The
highest correlation coefficients were associ-
ated with the ratios of Mg and/or K and/or N
to Ca (Table 2), but the scatter plots for bitter
pit vs. all potential predictor variables
showed a higher degree of variation than
expected (Fig. 1). Bitter pit seemed to be
best related to N/Ca with the ratios being
6–16 in trees with no bitter pit and 16–25 in
trees with 100% bitter pit (Fig. 1).

Development of a predictive model. The
object of multiple regression is to identify
a parsimonious model—a model with a high
level of explanation or prediction with as few
predictor variables as possible. Models with
too few variables may produce biased esti-
mates. When a model contains too many
variables the regression coefficients, P values,
and R2 may be misleading, and the predictive
performance of the model may be poor. The
statistics used to evaluate the best three
models with a given number of variables
are presented in Table 4. As the number of
predictor variables in a model increases, the
R2 value always increases. The adjusted R2 is
adjusted for the number of predictors in the
model and increases only if the new term
improves the model more than would be
expected by chance. Mallow’s Cp statistic
compares the precision and bias of the full
model to models with a subset of predictors,
and small values ofCp indicate that the model
is relatively precise with small variance.
Models with Cp values greater than the
number of predictors may be overfit and
candidate models with small Cp values are
preferred. AIC is a measure of the relative

quality of a model in a subset of models and
can be used to assess the model fit penalized
for the number of variables in the model.
Models with the smallest AIC values are
preferred. The final criterion that was used
was the model MSE, and small values of
MSE are preferred. Generally, all of these
criteria change together as one evaluates
models with increasing numbers of predictor
variables, but they can be used to compare
models with similar numbers of predictor
variables to aid in selecting the best model.

When data for the 3 years were pooled, the
best model with a single predictor variable
was N/Ca (Table 4). The accumulated ratio
was very highly correlated to K/Ca, Mg/Ca,
and (Mg + K)/Ca and therefore was no better
than the other ratios. The accumulated ratio
and (Mg + K + N)/Ca had similar R2 values

most of the time and based on the Cp statistic,
AIC values and MSE were similar predictors.
Adding SL to the model with N/Ca increased
the R2 from 0.58 to 0.68 and values for Cp,
AIC and MSE decreased dramatically. Shoot
length and N/Ca were the only variables
common to all models containing more than
two variables. Adding up to five additional
predictors to the model increased the R2 to
0.73, but the minimum values for Cp and AIC
were associated with the model with six
predictors. In addition to N/Ca and SL, pre-
dictors that were consistently selected, in
order of importance included P, B, S,
Ca, and Mg/Ca. Based on output from the
COLLINOINT option, N and N/Ca, N/Ca
and Ca, and N/Ca and Mg/Ca were collinear.
Models with more than five predictors
were considered nondesirable because they

Table 4. The best three multiple regression models for one to seven regressor variables, along with fit
statistics using data from nine trees in each of six orchards for 3 years (n = 161). For comparative
purposes, the best models containing accumulated ratio and (Mg + K + N)/Ca are also shown.

No. of variables Model variablesz R2 Adj R2 Cp AIC MSE

1 N/Ca 0.58 0.58 69.7 935.5 329.6
1 accum. ratio 0.55 0.55 87.7 947.8 355.8
1 Mg/Ca 0.53 0.52 100.8 956.2 374.9
1 (Mg + K + N)/Ca 0.52 0.51 108.3 959.3 382.2
2 N/Ca, SLy 0.68 0.68 18.7 894.6 254.1
2 SL, accum. ratio 0.62 0.62 49.3 920.8 299.0
2 N/Ca, Al 0.62 0.62 49.9 921.2 299.9
2 (Mg + K + N)/Ca, SL 0.60 0.59 62.9 929.6 315.8
3 N/Ca, SL, P 0.69 0.69 14.4 890.7 246.6
3 N/Ca, SL, Mn 0.69 0.69 16.0 892.2 248.9
3 N/Ca, SL, Al 0.69 0.68 17.2 893.3 250.7
3 N/Ca, SL, accum. ratio 0.68 0.68 21.4 895.7 254.4
3 (N/Ca), SL, (Mg + K + N)/Ca 0.68 0.68 22.0 896.2 255.3
4 N/Ca, SL P, B 0.71 0.70 5.4 881.7 231.8
4 N/Ca, SL, P, Al 0.70 0.69 11.8 888.2 241.3
4 N/Ca, SL, P, Na 0.70 0.69 12.8 889.2 242.8
4 N/Ca, SL, P, (Mg + K + N)/Ca 0.69 0.69 16.1 890.9 245.3
4 N/Ca, SL, P, accum. ratio 0.69 0.69 17.5 892.2 247.4
5 N/Ca, SL, P, B, S 0.72 0.71 5.08 881.3 229.8
5 N/Ca, SL, P, B, Ca 0.72 0.71 5.56 881.8 230.6
5 N/Ca, SL, P, B, Mg/Ca 0.71 0.70 6.56 882.9 232.1
5 N/Ca, SL, P, B, (Mg + K + N)/Ca 0.71 0.70 8.66 883.4 232.9
5 Ca, SL, N, P, accum. ratio 0.71 0.70 8.93 883.7 233.3
6 N/Ca, SL, P, B, S, Ca 0.72 0.71 2.85 878.8 225.0
6 N/Ca, SL, P, B, S Mg/Ca 0.72 0.71 4.97 881.1 228.2
6 N/Ca, SL, P, B, S, N 0.72 0.71 5.88 882.1 229.5
6 N/Ca, SL, P, B, Ca, (Mg + K + N)/Ca 0.72 0.71 7.95 882.7 230.4
7 N/Ca, SL, P, B, Ca, accum. ratio 0.71 0.71 8.20 882.9 230.8
7 N/Ca, SL, P, B, S, Ca, K/Ca 0.73 0.71 3.80 879.7 224.9
7 N/Ca, SL, P, B, S, Ca, (Mg + K)/Ca 0.73 0.71 3.97 879.9 225.1
7 N/Ca, SL, P, B, S, Ca, accum. Ratio 0.73 0.71 3.97 879.9 225.1
7 N/Ca, SL, P, B, S, Ca, (Mg + K + N)/Ca 0.72 0.71 6.04 880.6 226.1
zModels were obtained with the RSQUARE option in SAS’s PROC REG.
ySL = shoot length (cm).
AIC = Akaike information criterion; Cp = crop density; MSE = mean square error.

Table 5. The best one-, two-, three-, and four-variable multiple regression models for predicting the
percentage of ‘Honeycrisp’ apples on a tree that will develop bitter pit after storage based on average
shoot length (SL, cm) and peel nutritional concentrations (%) sampled 3 weeks before harvest. All R2

values are significant (P < 0.0001, n = 161).

Intercept N/Ca SL P B R2

Parameter estimates –30.97 4.628 — — — 0.5830
Standard errors of the estimates 3.81 4.628 — — —
Parameter estimates –42.54 3.895 0.810 — — 0.6805
Standard errors of the estimates 3.73 0.292 0.117 — —
Parameter estimates –54.91 3.772 0.748 186.19 — 0.6920
Standard errors of the estimates 6.31 0.292 0.118 77.12 —
Parameter estimates –46.82 4.173 0.583 363.32 –0.785 0.7123
Standard errors of the estimates 6.58 0.308 0.125 91.89 0.237
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contained variables that were collinear. The
best two-variable model (N/Ca + SL) and the
best four-variable model (N/Ca + SL + P + B)
had adjusted R2s of 0.68 and 0.70, respec-
tively. We selected the two-variable model
because it explained only 2% less variation
than the more complicated four-variable
model. Parameter estimates and standard
errors of the estimates for the best one-,
two-, three-, and four-variable models are
presented in Table 5 in case future re-
searchers would like to compare their models
with ours. Predicted bitter pit values obtained
with PROC SCORE were plotted against the
observed values for the best two-variable
model containing SL and N/Ca (Fig. 2). The
regression model predicts quite well the
percentage of fruit developing bitter pit on
trees with less than 50% bitter pit, but the
model underpredicts bitter pit for trees with
higher levels of observed bitter pit.

Models with two predictor variables can
sometimes be viewed as 3-dimensional plots,
but these are often difficult to interpret. For
ease of interpretation, the data set was parti-
tioned into three subsets, with similar num-
bers of observations, based on average SL:
short <18.0 cm; medium 18.01 to 27.99 cm;
and long >28 cm (Fig. 3). As average SL
increased, the slope of the predicted line
became steeper. Based on the slopes and the
R2 values, trees with long shoots were more
influenced by the ratio N/Ca than trees with
short shoots. Therefore, apple growers may
want to evaluate SL when considering Ca
application rates during the season. The
model developed from the 3-year data set
indicates that 68% of the variation in the
percentage of apples on individual trees that
develop bitter pit can be accounted for by
estimating average SL from 10 shoots per
tree and measuring the N/Ca ratio from peels
of 15 fruit per tree. Based on the predicted
lines in Fig. 3, for no more than 20% bitter
pit, trees with short, medium, and long shoots
should have N/Ca ratios no greater than 16,
12, and 9. For the commercial goal of less
than 5% bitter pit, the respective N/Ca ratios
are 8.5, 7.6, and 5.75.

Implications for managing bitter pit in
‘Honeycrisp’ orchards. The two-variable model
based on 3 years of research in commercial
‘Honeycrisp’ orchards with varying levels
of bitter pit has several implications for the
development of best management prac-
tices in the orchard. Growers have long-
understood the importance of a multifaceted
approach for controlling Ca-related disor-
ders in bitter pit-prone cultivars, but in the
case of ‘Honeycrisp’, it has been difficult to
ascertain which practices are most important
relative to its high susceptibility to the
disorder. The two-variable model suggests
the focus should be on managing terminal
shoot growth and increasing the ratio of Ca
to N in the fruit.

Managing terminal shoot growth begins
with orchard site selection and preparation.
Research by Cheng (2016) indicates although
it is important to encourage early tree growth
of ‘Honeycrisp’, it is imperative to avoid any

soil conditions or practices that will promote
excessive shoot growth during the bearing
years. Growth suppression is an option for
established blocks of ‘Honeycrisp’ (Mitcham,
2008; Silveira et al., 2012), but the two-
variable model suggests growers give greater
attention to optimizing factors that affect tree
vigor before planting ‘Honeycrisp’. Best man-
agement of Ca relative to N also begins
before planting, and lime applications in the
East often need to start 2 years before
planting to adjust the pH to 6.5 (Baugher
and Singh, 1989; Cheng, 2016). Leaf analysis
of Mid-Atlantic orchards historically indi-
cates N rates should be reduced rather than
increased (Baugher and Singha, 1985). The
prediction model highlights the value of
annual leaf analysis in ‘Honeycrisp’ orchards
for maintaining optimal N levels. Although
not included in the two-factor model, statis-
tical analyses demonstrated slightly better
predictions with the addition of Mg and/
or K to Ca ratios, which is in agreement with
other studies (Amarante et al., 2013; De
Freitas et al., 2015). Fruit peel analysis shows
potential as an additional tool for balancing
nutrient ratios.

As reported by Al Shoffe et al. (2014) and
Cheng (2016), Ca levels in ‘Honeycrisp’ fruit
are inherently lower than in other cultivars.
Peel Ca levels of 0.04% to 0.05% were
associated with the lowest bitter pit levels
in ‘Honeycrisp’. Whereas many apple culti-
vars have fruit peel Ca levels of 0.05% to
0.06%, ‘Honeycrisp’ often only had a peel Ca
level of 0.03%. Total actual Ca applied per
season was inversely related to bitter pit, with
the best suppression of bitter pit being with
9.0 to 14.6 kg·ha–1 and the source being
CaCl2 (95% confidence level, data not
shown). This finding is in agreement with
field research (Biggs and Peck, 2015) that
indicated actual Ca applications to ‘Honey-
crisp’ should be as high as 26.3 kg·ha–1 per
season and several studies that compared
foliar Ca products (Biggs and Peck, 2015;
Rosenberger et al., 2004).

Crop load effects varied by year and
orchard, which indicated a need for site-
specific adjustments for bitter pit prevention.
Crop density levels of 4 to 5 fruit/cm2 trunk
cross-sectional area were associated with less
bitter pit. Peel Ca concentration was posi-
tively correlated with CD. This is consistent
with the findings of Ferguson and Watkins
(1992) who reported lightly cropped trees
had lower fruit Ca and higher fruit K con-
centrations than heavily cropped trees. Re-
search by Telias et al. (2006) demonstrated
similar results with ‘Honeycrisp’. Ferguson
(2001) reported the bitter pit association with
low crop load was not directly related to fruit
size and was more likely due to differences in
fruit to leaf ratios and fruit position on the
tree, with fruit in the upper canopy tending to
have lower Ca levels.

Implications for post-harvest handling of
‘Honeycrisp’. Predictive schemes for segre-
gating fruit for short- vs. long-term storage
based on bitter pit potential have generally
involved a one-variable fruit Ca model or

more complex models using the ratios of fruit
Mg and/or K and/or N to Ca (Dris et al., 1998;
Ferguson et al., 1979; Lanauskas and Kvi-
kliene, 2006; Hanson, 2012). To increase
reliability of the results, fruit for nutrient
analysis should be systematically sampled
from the field rather than from the bin
(Ferguson, 2001). Sampling fruit 3 weeks
before harvest gives the analytical laboratory
time to send fruit analysis reports to growers
and packers before harvest, and research by
Al Shoffe et al. (2014) showed no differences
in nutrient levels between fruit peel sampled
at harvest vs. 3 weeks before harvest. The
3 years of uniform trials in commercial
‘Honeycrisp’ orchards demonstrated a simple
N/Ca nutrient model could be strengthened
by the addition of terminal SLmeasurements.
Thesemeasurements can be obtained 3weeks
before harvest while collecting fruit for
mineral analysis. For best results, shoots
should be measured on the trees from which

Fig. 2. Relationship between bitter pit (% ob-
served) and predicted values generated with
SAS’s PROC SCORE. Regression equation
for the three-year data set (n = 161): Bitter
pit (%) = –44.29 + 0.802*SL + 4.13*(N/Ca);
where SL = average terminal shoot length (cm)
on each tree, and (N/Ca) is the ratio of nitro-
gen to calcium in the peel at the calyx end
of ‘Honeycrisp’ apples for three seasons.

Fig. 3. Relationships between bitter pit (BP) and
N/Ca ratio for ‘Honeycrisp’ apple trees with
short, medium, and long shoots. Shoot length is
the average terminal shoot length of 10 shoots
per tree. The N/Ca ratio is the ratio of nitrogen
to calcium in the peel at the calyx end of the
apples over three years. Regression equations:
short shoots - %BP = –12.40 + 2.06 *(N/Ca)
(R2 = 0.19, P = 0.0005, n = 58); medium shoots:
%BP = –2.01 + 3.55*(N/Ca) (R2 = 0.47, P <
0.0001, n = 50); and long shoots - %BP =
–22.46 + 4.80*(N/Ca) (R2 = 0.6897, P <
0.0001, n = 53).
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fruit are sampled, and current season
shoots with moderate branch angles should
be selected (avoiding strong vertical shoots
or weak shoots hanging below a horizontal
orientation). ‘Honeycrisp’ is a challeng-
ing cultivar to grow and to store, and
research on tree and storage management
is on-going.
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